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A s e m i e m p i r i c a l  theory  of turbulent  t r a n s f e r  is used to ca lcula te  the flow of a liquid in a 
tube containing m a c r o s c o p i c  fo rmat ions .  The p rope r t i e s  of the solution cor respond  with 
the data on the effect  of po l ym er  addit ives on the turbulent  flow c h a r a c t e r i s t i c s .  

1. In Hol t ' s  r ev iew [1], the poss ib i l i ty  is mentioned that molecu les  of a po lymer ,  being pas s ive  and 
p r e sen t  in the flow,, i n t e rac t  mechanica l ly  with turbulent  pulsat ions .  

In this paper ,  an a t tempt  is made to const ruct  a s cheme  of in te rac t ion  of turbulent  flow with the 
m a c r o s c o p i c  format ions  p r e s e n t  in the flow. The s cheme  is based  on the r ep re sen ta t i on  of the exis tence  
in solution of r e l a t ive ly  coa r s e  format ions  and assoc ia te s ,  which was developed in [2-4]. In a cu r ren t  
with sufficient  s h e a r  s t r e s s ,  these  m ac ro fo r ma t ions  a r e  drawn along with the flow. We shall  s t a r t  f rom 
the assumpt ion  that the m a e r o f o r m a t i o n s  a r e  f i l i form cyl indrical  f ibers ,  of neutra l  buoyancy and with 
length Ls and radius  of c r o s s - s e c t i o n  L 0, not ve ry  r igid in the i r  s t ruc tu re  (gelatinous). The densi ty of 
the f iber  is a s s u m e d  equal to the densi ty of the surrounding medium.  The i r  quantity in the s t r e a m  is de-  
fined by the concentra t ion  n o . 

2. Turbulent  flow is a collect ion of Vortices,  nodules of liquid with co r r e l a t ed  veloci t ies ,  m o l a r  
d i ame te r  2L, which a r e  genera ted  at every  point of the flow and a r e  t r anspo r t ed  while in teract ing with the 
surrounding medium.  The veloci ty  dis t r ibut ion is descr ibed  by the probabi l i ty  densi ty  of the dis t r ibut ion 
function f, which sa t i s f i es  the equation [6, 7]: 
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f0 is a normal  dis t r ibut ion function with local  p a r a m e t e r s  <UK> and E. In a s t r e a m  without admix tures ,  
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The t r a n s p o r t  equation follows f r o m  Eq. (1) 
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which gives the cor responding  momenta  equations.  For  flow in a l aye r  of constant  f r ic t ion s t r e s s ,  the 
solution has  the fo rm [7] (additionally, the equation for  the sca l e  L is used):  
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Fig. 1. Explanation of the scheme 
for the interact ion between vor tex 
and fiber.  
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The values of the constants a 0 and A are  chosen f rom com- 
par ison with experimental  data, 3a0A = 4 and A = 3.86. 

3. In a current  with distr ibuted macroscop ic  f ibers ,  
an additional r es i s t ance  for a moving vor tex will originate 
when it interacts  with the f ibers .  The mechanism for the 
supress ion  of velocity pulsations due to interact ion with the 
f ibers was d iscussed qualitatively in the papers  of Van-Driest  
(the interaction of turbulent pulsations with molecu le - rods  is 
proport ional  to the velocity u') [8] and Black (discrete dyna- 
mic  interact ion between macromolecu les  and smal l  sca le  
turbulence in the vicinity of a wall) [9] and in [5], etc. 

We shall descr ibe  the interact ion in the following way. 
The fibers a re  drawn through the s t r eam (Fig. 1). A vortex,  
while moving in the s t ream,  af ter  unit t ime encounters a 
specified number  of f ibers .  It is equal to the product  of the 

sur face  a rea  swept by the vor tex in the t r ansve r se  section 2LIc[ and the fiber concentrat ion n 1 in the 
t r a n s v e r s e  section (the f ibers a re  long). The quantity n 1 is numer ica l ly  equal to n 0. With each interaction 
between the f iber and the vortex,  the fiber t r ans fe r s  a cer ta in  momentum, which also amounts to an addi- 
tional r es i s t ance  acting on the vortex.  

When the s ize  of the vor tex  is la rge  (compared with the length of the fiber), the mass  of the vor tex  
is considerably g rea t e r  than the mass  of the f iber and it may be drawn almost  entirely into motion. The 
momentum t r ans fe r r ed  can be assumed to be proport ional  to the quantity u'M, where M = prL~Ls is the 
mass  of the fiber.  

When the s ize  of the vor tex  is quite smal l  (L - L 0 << Ls), the mass  of the vor tex is considerably less  
than the mass  of the f iber and the vor tex can draw into motion only a par t  of the fiber,  to the extent of 
length ~L, then the momentum t r ans fe r r ed  can be  assumed to be proport ional  to the quantity u ' M L / L s .  
The interpolated formula 

u ' M (  L~ , ~ ) - - 1 _ _ _  t t ' M L , , z r  p 

, KtL  ; [,.~ 

iS used below. The additional d rag  fo rce  acting on unit mass  of vor tex has the form 
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4. Using relat ion (4), we have 

(3 ) 
F K = 2"~ --4- a~ + e . 

Substituting this express ion in the t r anspor t  equation (2), we obtain approximate  momenta equations for 
the fr ict ion in a layer  of constant turbulent fr ict ion s t r e s s  (we shall neglect diffusion t r ans fe r  of the energy 
of the pulsation motion): 
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Velocity profi le versus  fiber concentration, for  different values of the Reynolds hum- 

Fig. 3. Dependence of the drag coefficient for  flow in a tube on the Reynolds number  and the 
f iber concentrat ion.  

The relat ion L = ~y is used for the scale,  where ~ = 0.4. The solution of this sys tem of equations 
has the form 

= < u  )o  + 1 + ~ (lq-e)-'/2; 

(u v ) +=: ( u  v )o+(1 -~e)-1/2; L + dU+ =(1-4-~) 1/4 1 -[- �9 @+ (6) 

When the solution is extended to the wall, a two- layer  scheme is assumed:  for  y+ < 11.3, the veloeityU§ 
= y+, and for  y+ > 11.3, the formulas  (6) a re  used. Here, we take 3aoA = 4, i rw /P l  = V2., U + = U / V . ,  
y+ = y V . / v  and X = 2(U~) -2 is the drag coefficient of the tube, U 1 is the mean value of the flow velocity in 
the tube. The solution depends on a number of p a r a m e t e r s :  

L~ ~ =: (LdD)  Re )j;2 ::: (LorD) 2.82R +, 

E (for a given value of L~ defines the magnitude of the concentrat ion el), K1, L0/D, (~K1/K) L0/Ls = P. 
In the example quoted, we took 

K, - 067; P .... 0.2; L , / D  --  I0 -'~, 

With the assumed numerica l  values of these pa rame te r s ,  the solution depends on L~ and c t. The velocity 
profi le  u+{y +} and the dependence for  the drag coefficient on the Reynolds number  for different concentra-  
tion values a re  shown in Fig. 2 and 3. 

The solution is conducted in the following way: 

1. The velocity profi le  s ta r t s  to dis tor t  in the vicinity of the boundary with a viscous sublayer  and 
away from the wall it tends to t r ans fo rm to a logari thmic profi le with a normal  slope. The t ransi t ion zone 
increases  with increase  of the f iber concentrat ion value. The value of the constant K 1 is chosen such that, 
when cl = 1, a "limiting" profi le  was achieved, close to that observed experimental ly.  

2. T h e d r a g  coefficient dec reases  with increase  of concentrat ion.  In the formal  solution, the mag-  
nitude of the concentrat ion attains a maximum value when the f ibers densely adjoin one to the other.  This 
means,  that the nature of the flow must  be reorganized,  as the interact ion of the f ibers becomes more  
complex. Qualitatively, this can be compared  with the existing data on the effect of volume concentrat ion 
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on the d e c r e a s e  of d rag ,  the exis tence  of a "c r i t i ca l  concentra t ion"  and a l imi t  in the d e c r e a s e  of the d rag  
with i n c r e a s e  of the concent ra t ion  ( r e fe rences  in [1] and [10]). F igure  3 shows the re la t ion  for  di f ferent  
values  of e 1 and the l imit ing expe r imen ta l  curve .  

The solution contains the effect  of the tube d i a m e t e r .  For  a given Reynolds number ,  an i n c r e a s e  of 
the tube d i a m e t e r  co r r e sponds  to a r e d u c t i o n  of concentra t ion .  A reduct ion in the value of the f iber  length 
Ls with a fixed t r a n s v e r s e  s ize  leads to a reduct ion of the effect  of dec reas ing  the drag .  

The  genera l  na ture  of d is tor t ion  of the ve loc i ty  p rof i l e  conforms  with the exper imenta l  data  of [11, 
15] etc .  ( r e fe rences  in [1, 8, 15]). 

3. The re la t ions  (6), following f r o m  the solution, a l so  conform qual i ta t ively with the exper imenta l  
data of [12] and the data of [13, 14, 15]: the in tens i ty  of the t r a n s v e r s e  veloci ty  component  of the pulsat ion 
mot ion fa l ls ,  the in tensi ty  of the longitudinal component  i n c r e a s e s  and the an iso t ropy  in the d is t r ibut ion of 
the ve loc i ty  pulsa t ion components  i n c r e a s e s .  The  m a x i m u m  value of the quantity e, a t tained at the boundary 
with the v iscous  sub layer ,  is equal to 2.5. 

Thus,  the appl icat ion of the phenomenological  theory  of the mixing length, taking into account  the dy- 
namic  in te rac t ion  of the v e r t i c e s  with p a s s i v e  m a c r o f o r m a t i o n s ,  leads to a number  of in fe rences  which 
conform with the obse rved  m e c h a n i s m s  for  reducing d rag  in a turbulent  s t r e a m  of a p o l y m e r  solution.  It 
can be seen  that the pa t t e rn  of in te rac t ion  between the  vo r t i ces  and f ibers  is  m o r e  complex  because  of the 
poss ib le  an iso t ropy  of the fo rce  effect,  due to the v i scoe las t i c  p r o p e r t i e s  of the molecu les .  But it appea r s  
that  the hydromechan ica l  approach  a lso  m e r i t s  at tention.  
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N O T A T I O N  

is the function of the veloci ty  d is t r ibut ion in turbulent  flow; 
is the co r r e l a t i on  t ime;  
is  the mean  in tegra ted  sca le  of turbulence;  
is the pulsat ion components  of velocity;  
is the mean  value of pulsat ion energy;  
is the modulus of ve loci ty  of pulsat ion motion; 
a r e  the empi r i ca l  constants ;  
a r e  the components  of the fo rce  of in teract ion between a vor t ex  and the su r round-  
mg medium;  
is the length of a f iber ;  
is  the radius  of f iber  t r a n s v e r s e  sect ion;  
is the concentra t ion  of f ibers  in the t r a n s v e r s e  sec t ion  of the s t r e a m ;  
is the volume concent ra t ion  of f ibers ;  
is the m a s s  of a f iber ;  
is the m a s s  of a vor tex;  
is the f r ic t ional  force ;  
is the f r ic t ional  velocity;  
is the d r ag  coeff icient  of tube; 
is  the mean  value of flow veloci ty  in tube; 
is the d i a m e t e r  of tube; 
is the in terpola t ion  function, a s sumed  for  desc r ib ing  the in te rac t ion  between vo r -  
tex and f iber ;  
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