ONE EXAMPLE OF TURBULENT FLOW WITH A STRONG
EFFECT ON THE PULSATION CHARACTERISTICS OF
THE FLOW

A. T. Onufriev UDC 532,517.4

A semiempirical theory of turbulent transfer is used to calculate the flow of a liquid in a
tube containing macroscopic formations. The properties of the solution correspond with
the data on the effect of polymer additives on the turbulent flow characteristics.

1. In Hoit's review [1], the possibility is mentioned that molecules of a polymer, being passive and
present in the flow, interact mechanically with turbulent pulsations.

In this paper, an attempt is made to construct a scheme of interaction of turbulent flow with the
macroscopic formations present in the flow, The scheme is based on the representation of the existence
in solution of relatively coarse formations and associates, which was developed in [2-4]. In a current
with sufficient shear stress, these macroformations are drawn along with the flow. We shall start from
the assumption that the macroformations are filiform cylindrical fibers, of neutral buoyancy and with
length Lg and radius of cross-section Ly, not very rigid in their structure (gelatinous). The density of
the fiber is assumed equal to the density of the surrounding medium. Their quantity in the stream is de-
fined by the concentration ny.

2. Turbulent flow is a collection of vortices, nodules of liquid with correlated velocities, molar
diameter 21, which are generated at every point of the flow and are transported while interacting with the
surrounding medium. Thevelocity distribution is described by the probability density of the distribution
function f, which satisfies the equation [6,7]:
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f, is a normal distribution function with local parameters <ug > and E. In a stream without admixtures,
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The transport equation follows from Eq. (1)
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which gives the corresponding momenta equations. For flow in a layer of constant friction stress, the
solution has the form [7] (additionally, the equation for the scale L is used):
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1(4 //‘\‘ parison with experimental data, 3a,A =4 and A = 3.86.
L 7¢’ 3. In a current with distributed macroscopic fibers,
an additional resistance for a moving vortex will originate
when it interacts with the fibers. The mechanism for the
B~y supression of velocity pulsations due to interaction with the

fibers was discussed qualitatively in the papers of Van-Driest
PA (the interaction of turbulent pulsations with molecule-rods is
E jmr T proportional to the velocity u') [8] and Black (discrete dyna-
L a4 b mic interaction between macromolecules and small scale
d turbulence in the vicinity of a wall) [9] and in [5], etc.

Fig. 1. Explanation of the scheme
for the interaction between vortex
and fiber.

We shall describe the interaction in the following way.
The fibers are drawn through the stream (Fig. 1). A vortex,
while moving in the stream, after unit time encounters a
. specified number of fibers. It is equal to the product of the
surface area swept by the vortex in the transverse section 2Llcl and the fiber concentration n; in the
transverse section (the fibers are long). The quantity ny is numerically equal to n,. With each interaction
between the fiber and the vortex, the fiber transfers a certain momentum, which also amounts to an addi-
tional resistance acting on the vortex.

When the size of the vortex is large (compared with the length of the fiber), the mass of the vortex
is considerably greater than the mass of the fiber and it may be drawn almost entirely into motion, The
momentum transferred can be assumed to be proportional to the quan'uty u'M, where M = p1rL Lg is the
mass of the fiber.

When the size of the vortex is quite small (L = Ly < Lg), the mass of the vortex is considerably less
than the mass of the fiber and the vortex can draw into motion only a part of the fiber, to the extent of
length ~L, then the momentum transferred can be assumed to be proportional to the quantity u'ML/Ls.

The interpolated formula
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is used below. The additional drag force acting on unit mass of vortex has the form
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Substituting this expression in the transport equation (2), we obtain approximate momenta equations for
the friction in a layer of constant turbulent friction stress (we shall neglect diffusion transfer of the energy
of the pulsation motion):

Lo dUu \/LL;> 3 , . 1 2 2
2 Uty —&g-z——r——(“‘—‘ao/l‘rs e E —(u; )|,

s dU sty > 3
Cuyy o Kty (1+ aoAJrs). (5)

1521



4
20
! =~ 02
N
=&
g — o~ 1
/ 0 0? v’ Al 1 A .. o Re
Fig. 2 _ Fig. 3
Fig. 2. Velocity profile versus fiber concentration, for different values of the Reynolds num-~

ber.

Fig. 3. Dependence of the drag coefficient for flow in a tube on the Reynolds number and the
fiber concentration.

The relation L =1y is used for the scale, where ® = 0.4. The solution of this system of equations
has the form
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When the solution is extended to the wall, a two-layer scheme is assumed: for y* < 11.3, the velocity U*
=yT, and for y* > 11.3, the formulas (6) are used. Here, we take 3aA =4, lrw/pl = Vi, U =U/Vs,
y*t =yVs/v and A = 2(U)"? is the drag coefficient of the tube, Uj is the mean value of the flow velocity in
the tube. The solution depends on a number of parameters:

Ly =(Ly/D) Re d'”? == (L,/D) 2.82R",

E (for a given value of Ly defines the'magnitude of the concentration ¢;), Ky, Ly¢/D, (nKy/K) Ly/Lg = P.
In the example quoted, we took

Ky -0.67; P--0.2; 1,/D -- 102,

With the assumed numerical values of these parameters, the solution depends on L{ and ¢,. The velocity
profile u*(y") and the dependence for the drag coefficient on the Reynolds number for different concentra~
tion values are shown in Fig. 2 and 3.

The solution is conducted in the following way:

1. The velocity profile starts to distort in the vicinity of the boundary with a viscous sublayer and
away from the wall it tends to transform to a logarithmic profile with a normal slope. The transition zone
increases with increase of the fiber concentration value. The value of the constant K; is chosen such that,
when ¢; =1, a "limiting" profile was achieved, close to that observed experimentally.

2. The drag coefficient decreases with increase of concentration, In the formal solution, the mag-
nitude of the concentration attains a maximum value when the fibers densely adjoin one to the other. This
means, that the nature of the flow must be reorganized, as the interaction of the fibers becomes more
complex. Qualitatively, this can be compared with the existing data on the effect of volume concentration
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on the decrease of drag, the existence of a "critical concentration” and a limit in the decrease of the drag
with increase of the concentration (references in [1] and {10]). Figure 3 shows the relation for different
values of ey and the limiting experimental curve.

The solution contains the effect of the tube diameter. For a given Reynolds number, an increase of
the tube diameter corresponds to a reduction of concentration. A reduction in the value of the fiber length
Ls with a fixed transverse size leads to a reduction of the effect of decreasing the drag.

The general nature of distortion of the velocity profile conforms with the experimental data of [11,
15] ete. {(references in [1, 8, 15]).

3. The relations (6), following from the solution, also conform qualitatively with the experimental
data of [12] and the data of [13,14,15]: the intensity of the transverse velocity component of the pulsation
motion falls, the intensity of the longitudinal component increases and the anisotropy in the distribution of
the velocity pulsation components increases. The maximum value of the quantity €, attained at the boundary
with the viscous sublayer, is equal to 2.5.

Thus, the application of the phenomenological theory of the mixing length, taking into account the dy-
namic interaction of the vortices with passive macroformations, leads to a number of inferences which
conform with the observed mechanisms for reducing drag in a turbulent stream of a polymer solution. It
can be seen that the pattern of interaction between the vortices and fibers is more complex because of the
possible anisotropy of the force effect, due to the viscoelastic properties of the molecules. But it appears
that the hydromechanical approach also merits attention.

NOTATION

f is the function of the velocity distribution in turbulent flow;

T is the correlation time;

L is the mean integrated scale of turbulence;

uk is the pulsation components of velocity;

E is the mean value of pulsation energy;

lel is the modulus of velocity of pulsation motion;

a2y, A are the empirical constants;

Fg are the components of the force of interaction between a vortex and the surround-
ing medium;

Lg is the length of a fiber;

Ly is the radius of fiber transverse section;

ny is the concentration of fibers in the transverse section of the stream;

cq is the volume concentration of fibers;

M is the mass of a fiber;

m is the mass of a vortex;

TW is the frictional force;

Vi is the frictional velocity;

A is the drag coefficient of tube;

Uy is the mean value of flow velocity in tube;

D is the diameter of tube;

@ is the interpolation function, assumed for describing the interaction between vor-
tex and fiber;
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Re = UiD/v;

D = 2R;
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